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UNIT I – VECTOR SPACES  

PART – A 

1. Define vector space 

2. Define subspace  

3. Define span[s] 

4. Define linear combinations 

5. Define linearly independent and linearly dependent 

6. Define basis  

7. Define finite dimensional 

8. State and prove cancellation law for vector addition. 

9. Write down the standard basis for 𝐹𝑛. 

10.     Is {(1,4, −6), (1,5,8), (2,1,1), (0,1,0)} is a linearly independent subset of 𝑅3 ? 

11.    Write the vectors w = (1, −2,5) as a linear combination of the vectors                                                              

𝑣1  =  (1,1,1), 𝑣2  =  (1,2,3) 𝑎𝑛𝑑 𝑣3  =  (2, −1,1) 

12.         Determine whether 𝑤 = (4, −7,3) can be written as a linear combination of    

  𝑣1 = (1,2,0)   and 𝑣2 = (3,1,1) in 𝑅3 

13.         For which value of k will the vector 𝑢 = (1, −2, 𝑘) in 𝑅3 be a linear combination of          

   the vectors 𝑣 = (3,0, −2) and 𝑤 = (2, −1,5)? 

14.        Determine whether the set 𝑊1 = {(𝑎1, 𝑎2, 𝑎3) ∈ 𝑅3 ∶ 𝑎1 = 𝑎3 + 2} is a subspace of  

     𝑅3 under the operations of addition and scalar multiplication defined on 𝑅3 

15.      Point out whether the set 𝑊1 = {(𝑎1, 𝑎2, 𝑎3) ∈ 𝑅3 ∶  𝑎1 − 4𝑎2 − 𝑎3  = 0} is a subspace of 𝑅3 

under the operations of addition and scalar multiplication defined on 𝑅3 
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16.  Point out whether 𝑤 = (3,4,1) can be written as a linear combination of 𝑣1 = (1, −2,1)                       

and 𝑣2 = (−2, −1,1) in 

17.  Show that the vectors {(1,1,0), (1,0,1) and (0,1,1)} genarate 𝐹3 

18.    Determine which of the following sets are basis for R3  

              (𝑖)    {(1,0, −1), (2,5,1), (0, −4,3)}    (𝑖𝑖)    {(1, −3, −2), (−3,1,3), (−2, −10, −2)} 

 

19.        Determine which of the following sets are basis for   𝑃2(𝑅) 

(i)   {−1 − 𝑥 + 2𝑥2, 2 + 𝑥 − 2𝑥2, 1 − 2𝑥 + 4𝑥2} 

(ii)  {−1 + 2𝑥 + 4𝑥2, 3 − 4𝑥 − 210, −2 − 5𝑥 − 6𝑥2} 

20.           Evaluate which of the following sets are bases for 𝑅3 : 

    (i){(1,0, −1), (2,5,1), (0, −4,3)}                     (ii){(−1,3,1), (2, −4, −3), (−3,8,2)} 

 

 

PART – B  (All are 8- marks) 
 

 
I- Vector Spaces  And  Sub-Spaces 

 

1. In any vector space V, the following statements are true,  

(i) 0𝑥 = 0, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑣           

          (ii) 𝑎0 = 0, ∀𝑎 ∈ 𝑣      

          (iii) (−𝑎)𝑥 =  −(𝑎𝑥), ∀𝑎 ∈ 𝐹, ∀𝑥 ∈ 𝑣   

          (iv) if 𝑎 ≠ 0, 𝑡ℎ𝑒𝑛 𝑎𝑥 = 0 ⟹ 0 

 

2.          Let 𝑉 be the set of all polynomials of degree less than or equal to ‘n’ with real 

coefficients. Show that 𝑉 is a vector space over𝑅 with respect to polynomial addition 

and usual multiplication of real numbers with a polynomial 

                                              (or) 

Prove that for 𝑛 > 0, the set Pn  of polynomials of degree at most n consists of all 

polynomials of the from 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ … … … . +𝑎𝑛𝑥𝑛 is a vector space. 

3.        Let V denote the set of ordered pairs of real numbers. If  (𝑎1, 𝑎2) and (𝑏1, 𝑏2) are 

elements of  V and 𝑐 ∈ 𝑅, 𝑑𝑒𝑓𝑖𝑛𝑒 (𝑎1, 𝑎2) + (𝑏1, 𝑏2) = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2) 𝑎𝑛𝑑 𝑐(𝑎1, 𝑎2) =
(𝑐𝑎1, 𝑐𝑎2) .  Is V a vector space over R with these operations? Justify your answer. 

 

4.   Prove that any intersection of subspaces of a vector space V is a subspaces of  V. 
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5.     The intersection of the subspaces 𝑤1 𝑎𝑛𝑑 𝑤2 of the vector space V is also a subspace. 

6.       Prove that the span of any subset S of a vector space V is a subspace of V. 

moreover, any subspace of V that contains S must also contain the span of  S. 

            (or) 

The linear span L(S) of any subset of a vector space V(F) is a subspace of V(F).  

moreover 𝐿(𝑆) ⊂ 𝑊. 

 

7.          Let 𝑊1 and 𝑊2 be subspaces of vector space V. prove that 𝑤1 ∪ 𝑤2 is a subspace 

of  V if and only if 𝑤1 ⊆ 𝑤2 (𝑜𝑟)  𝑤2 ⊆ 𝑤1 

                                                               (or) 

        Let w1 and w2 be sub-spaces of vector space V, prove that 𝑤1 ∪ 𝑤2  is a sub-space                   

of  V,   iff  one is contained in the other.    

   

8. Show that the set  𝑤 = {(𝑎1, 𝑎2, 𝑎3) ∈ 𝑅3: 2𝑎1 − 7𝑎2 + 𝑎3 = 0} is a sub-space of V 

 

9. Show that the set  𝑤 = {(𝑎1, 𝑎2, 𝑎3) ∈ 𝑅3: 𝑎1 + 2𝑎2 − 3𝑎3 = 0} is a sub-space of V   

 

10.         Prove that   𝑤1 = {(𝑎1 , 𝑎2, … … … … 𝑎𝑛) ∈ 𝐹𝑛;  𝑎1 + 𝑎2 + ⋯ … … … +𝑎𝑛 = 0}  is a 

subspace of  𝐹𝑛, but 𝑤2 = {(𝑎1 , 𝑎2, … … … … 𝑎𝑛) ∈ 𝐹𝑛;  𝑎1 + 𝑎2 + ⋯ … … … +𝑎𝑛 = 1}  

is not a subspace . 

 

11.          Prove that of  W is a subspace of a vector space V and  𝑤1 , 𝑤2, … … … … , 𝑤𝑛 are 

in W, then  𝑎1𝑤1 + 𝑎2𝑤2 + ⋯ … … … +𝑎𝑛𝑤𝑛 ∈ 𝑊  for any scalars  𝑎1 , 𝑎2, … … … … 𝑎𝑛 

12.        Show that W is in the subspace of 𝑅4 spanned by  𝑣1, 𝑣2, 𝑣3,  where 𝑤 = [

9
−4
−4
7

],   

𝑣1 = [

8
−4
−3
9

] , 𝑣2 = [

−4
3

−2
−8

] , 𝑣3 = [
−7
6

−18
] 

 

13.   If  S and T are subsets of vector space V(F) ,then prove that                                                        

(i) 𝑆 ⊂ 𝑇 ⟹ 𝐿(𝑠) ⊂ 𝐿(𝑇)     (ii) 𝐿(𝑆 ∪ 𝑇) ⟹ 𝐿(𝑆) + 𝐿(𝑇)        (iii) 𝐿[𝐿(𝑆)] = 𝐿(𝑆) 
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II-Linear Independent, Linear Dependent and basis 

 

 

1. For each of the following list of vectors in R3.Determine whether the first vector can be 

expressed as a linear combination of the other two   (i)  (-2,0,3),(1,3,0),(2,4,-1)               

(ii) (3,4,1),(1,-2,1),(-2,-1,1). 

 

 

 

2. For each of the following list of 𝑃3(𝑅).Determine whether the first vector can be 

expressed as a linear combination of the other two                                                                                          

(i) 𝑥3 − 3𝑥 + 5, 𝑥3 + 2𝑥2 − 𝑥 + 1, 𝑥3 + 3𝑥2 − 1 

(ii) 𝑥3 − 8𝑥2 + 4𝑥 , 𝑥3 − 2𝑥2 + 3𝑥 + 1, 𝑥3 − 2𝑥 + 3 

(iii) 4𝑥3 + 2𝑥2 − 6 , 𝑥3 − 2𝑥2 + 4𝑥 + 1, 3𝑥3 − 6𝑥2 + 𝑥 + 4 

 

3. Determine whether the following sets are linearly independent (or) linearly dependent. 

(i) {[
1 0

−2 1
] , [

0 −1
1 1

] , [
−1 2
1 0

] , [
2 1

−4 4
]} 𝑖𝑛 𝑀2𝑥2(𝑅) 

(ii) {[
1 0

−2 1
] , [

0 −1
1 1

] , [
−1 2
1 0

] , [
2 1
2 −2

]} 𝑖𝑛 𝑀2𝑥2(𝑅) 

(iii) {[
1 −3 2

−4 0 5
] , [

−3 7 4
6 −2 −7

] , [
−2 3 11
−1 −3 2

]}  𝑖𝑛 𝑀2𝑥3(𝑅) 

 

4. Determine the following sets are linearly independent (or) linearly dependent 

(i) {𝑥3 + 2𝑥2 , −𝑥2 + 3𝑥 + 1, 𝑥3 − 𝑥2 + 2𝑥 − 1}𝑖𝑛  𝑃3(𝑅)  

(ii) {𝑥3 − 𝑥 , 2𝑥2 + 4 , −2𝑥3 + 3𝑥2 + 2𝑥 + 6}𝑖𝑛  𝑃3(𝑅) 

(iii) {(1, −1,2), (1, −2,1), (1,1,4)} 𝑖𝑛 𝑅3 

(iv) {(1, −1,2), (2,0,1), (−1,2, −1)} 𝑖𝑛 𝑅3 

 

5. Prove that vectors  𝑢1 = (2, −3,1), 𝑢2 = (1,4, −2),   𝑢3 = (−8,12, −4),                       
 𝑢4 = (1,37, −17), 𝑢5 = (−3, −5,8) Generate R3. Find a subset of the set 
{𝑢1, 𝑢2, 𝑢3, 𝑢4}  that is a basis for 𝑅3.

  

 

6. In each part ,determine whether the given vector is in the span S 

(i) (−1,2,1), 𝑆 = {(1,0,2), (−1,1,1)} 

(ii) (−1,1,1,2), 𝑆 = {(1,0,1, −1), (0,1,1,1)} 

(iii) −𝑥3 + 2𝑥2 + 3𝑥 + 3, 𝑆 = {𝑥3 + 𝑥2 + 𝑥 + 1, 𝑥2 + 𝑥 + 1, 𝑥 + 1} 

 

7. Let 𝑆 = {(1,1,0), (1,0,1), (0,1,1)} be a subset of the vector space 𝐹3.prove that if  F=R, 

then S is linearly independent. 
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8. Show that the set {1, 𝑥, 𝑥2, … … … … . 𝑥𝑛} is a linearly independent in 𝑃𝑛(𝐹). 

 

9. Let V be a vector space, and let 𝑆1 ⊆ 𝑆2 ⊆ 𝑉. If 𝑆1 is linearly dependent, then 𝑆2 is 

linearly dependent. 

 

10. Let S be a linearly independent subset of a vector space V, and V be a vector in v that is 

not in S. then 𝑆 ∪ {𝑉} is linearly dependent iff  𝑉 ∈ 𝑠𝑝𝑎𝑛 (𝑆). 

 

11. Let V be a vector space over a field of characteristic not equal to zero,  let U and V be 

distinct vectors in V. Prove that {𝑢, 𝑣} is linearly independent iff {𝑢 + 𝑣, 𝑢 − 𝑣} is 

linearly independent. 

 

12. Let V be a vector space over a field of characteristic not equal to zero,  let U ,V and W 

be distinct vectors in V. Prove that {𝑢, 𝑣, 𝑤} is linearly independent iff {𝑢 + 𝑣, 𝑣 +
𝑤, 𝑢 + 𝑤} is linearly independent. 

 

13. Let U,V and W be distinct vectors of a vector space V. Show that if  {𝑢, 𝑣, 𝑤} is a basis 

for  V, then {𝑢 + 𝑣 + 𝑤, 𝑣 + 𝑤, 𝑢} is also basis for V. 

 

14. If a vector space V is generated by a finite set S, then some subset of S is a basis for V. 

Hence V has a finite basis. 

 

15. Let V be a vector space and 𝐵 = {𝑢1, 𝑢2, … … . , 𝑢𝑛} be a subset of  V, then B is a basis 

for V. If each 𝑣 ∈ 𝑉 can be uniquely expressed as a linear combination of vector of B. 

    (i.e)  It can be expressed in the form 𝑉 = 𝑎1𝑢1 + 𝑎2𝑢2 + ⋯ … . +𝑎𝑛𝑢𝑛   for unique 

scalar 𝑎1, 𝑎2, … … . , 𝑎𝑛. 

 

16.     If 𝑊1, 𝑊2 are two subspaces of a finite dimensional vector space 𝑉 then 

 dim(𝑊1 + 𝑊2) = dim 𝑊1 + 𝑑𝑖𝑚𝑊2 − dim(𝑊1 ∩ 𝑊2) and hence deduce that if                              

𝑉 = 𝑊1 + 𝑊2,   then   dim(𝑉) = dim 𝑊1 + 𝑑𝑖𝑚𝑊2  . 
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UNIT II – LINEAR TRANSFORMATION AND DIAGONALIZATION  

 

PART – A 

 

1. If 𝑇: 𝑉 → 𝑊 be a linear transformation then prove that 𝑇(0) = 0′ where 0 and 0′are the zero 

elements of V and W respectively Define Subspace of a vector space 

2. If 𝑇: 𝑉 → 𝑊 be a linear transformation then prove that 𝑇(−𝑣) = −𝑣 for 𝑣 ∈ 𝑉  

3. If 𝑇: 𝑉 → 𝑊 be a linear transformation then prove that 𝑇(𝑥 − 𝑦) = 𝑥 − 𝑦 for all 𝑥, 𝑦 ∈ 𝑉  

4.   Prove that the transformation T is linear if and only if 𝑇(𝑐𝑥 + 𝑦) = 𝑐𝑇(𝑥) + 𝑇(𝑦) 

5. Illustrate that the transformation 𝑇: 𝑅2 → 𝑅2 defined by 𝑇(𝑎1, 𝑎2) = (2𝑎1 + 𝑎2, 𝑎2) is linear        

6. Evaluate that the transformation 𝑇: 𝑅3 → 𝑅2 defined by by                                                                           

     T (𝑎1, 𝑎2, 𝑎3) = (𝑎1 − 𝑎2, 𝑎1 − 𝑎3) is linear. 

7. Describe explicitly the linear transformation 𝑇: 𝑅2 → 𝑅2such that 𝑇(2,3) = (4,5)𝑎𝑛𝑑                                    

𝑇(1,0) = (0,0) 

8. Illustrate that the transformation 𝑇: 𝑅2 → 𝑅3defined by 𝑇(𝑥, 𝑦) = (𝑥 + 1, 2𝑦, 𝑥 +𝑦)                            
is not linear 

9. Is there a linear transformation 𝑇: 𝑅3 → 𝑅3such that 𝑇(1,0,3) = (1,1)  and 
      (−2,0, −6) = (2,1)? 

10.   Define matrix representation of T relative to the usual basis {ei} 

11.   Find the matrix [T]e whose linear operator 𝑖𝑠 𝑇(𝑥, 𝑦) = (5𝑥 + 𝑦, 3𝑥 − 2𝑦) 

12.   Find the matrix representation of T whose basis is 𝑓1 = (1,2) 𝑓2 = (2,3) such that 
         (𝑥, 𝑦) = (2𝑦, 3𝑥 − 𝑦) 

13.   Define diagonalizable of a matrix with linear operator T. 
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14.   Find the matrix representation of usual basis {ei} to the linear operator                                                        
   (𝑥, 𝑦, 𝑧) = (2𝑦 + 𝑧, 𝑥 − 4𝑦, 3𝑥) 
 

15.   Define eigen value and eigen vector of linear operator T. 
 

16.   State Cayley-Hamilton Theorem 

17.   Find the matrix A whose minimum polynomial is 𝑡3 − 5𝑡2 + 6𝑡 + 8 

18.   Suppose 𝜆 is an eigen value of an invertible operator T.                                                                       

Show that 𝜆−1 is an eigen value    of  −1.   

PART – B  (All are 8- marks) 

 
1. Let V and W be the vector spaces and 𝑇: 𝑉 → 𝑊 be linear. Then prove that N(T) and 

R(T) are subspaces of V and W respectively. 
 

2. Let 𝑉 and 𝑊 be vector spaces and let 𝑇: 𝑉 → 𝑊 be a linear transformation.                                        

If 𝛽 ={𝑣1, 𝑣2, … , 𝑣𝑛}is a basis for 𝑉,then show that 𝑆𝑝𝑎𝑛𝑇(𝛽) = 𝑅(𝑇). Also prove that T 

is one –to-one if and only if 𝑁(𝑇) = {0} 

 

3. Dimension theorem:  Let V and W be the vector spaces and 𝑇: 𝑉 → 𝑊 be linear. If V is 
finite-dimensional then  nullity(T)+rank(T)=dim(V). 

 

4.  Let V and W be the vector spaces and 𝑇: 𝑉 → 𝑊 be linear, then T is one-to-one iff 
N(T)={0}. 

 

5. Let 𝑇: 𝑅3 → 𝑅2 defined by 𝑇(𝑎1, 𝑎2, 𝑎3) = (𝑎1 − 𝑎2, 2𝑎3). Find the basis for N(T) and 
the nullity of T. 

 

6. Let 𝑇: 𝑅2 → 𝑅3 defined by 𝑇(𝑎1, 𝑎2) = (𝑎1 + 𝑎2, 0, 2𝑎1 − 𝑎2). Find the basis for and 
compute N(T). 

 

7. Let 𝑇: 𝑅3 → 𝑅2 defined by 𝑇(𝑎1, 𝑎2, 𝑎3) = (𝑎1 − 𝑎2, 2𝑎3). Find the basis forR(T) and 
compute R(T). 

 

8. Let 𝑇: 𝑅2 → 𝑅3 defined by 𝑇(𝑎1, 𝑎2) = (𝑎1 + 𝑎2, 0, 2𝑎1 − 𝑎2). Find the basis for and 
compute N(T). 

 

9. Let 𝑇: 𝑅3 → 𝑅2 ,defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑦 + 𝑧) then 𝐵1 =

{(−1,1,1), (1, −1,1), (1,1, −1)} 𝑎𝑛𝑑 B2 = {(1,0), (0,1)} then find [𝑇]𝐵1

𝐵2  

 

10. Let 𝑇: 𝑅2 → 𝑅3,defined by 𝑇(𝑎1, 𝑎2) = (𝑎1 + 3𝑎2, 0, 2𝑎1 − 4𝑎2) then                                                 
 𝑎𝑛𝑑 B1 = {(1,0), (0,1)} 𝑎𝑛𝑑 𝐵2 = {(1,0,0), (0,1,0), (0,0,1)}. 
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11.  Let 𝑇: 𝑅3 → 𝑅3𝑎𝑛𝑑 𝑈: 𝑅3 → 𝑅3  be the linear transformation respectively defined 
by 𝑇(𝑎1, 𝑎2) = (𝑎1 + 3𝑎2, 0, 2𝑎1 − 4𝑎2) 𝑎𝑛𝑑 𝑈(𝑎1, 𝑎2) = (𝑎1 − 𝑎2, 2𝑎1, 3𝑎1 + 2𝑎2) .                 
Then prove that  [𝑇 + 𝑈]

𝛽
𝛾

= [𝑇]
𝛽
𝛾

+ [𝑈]
𝛽
𝛾

 

12.  Let T be the linear operator on R3 defined by 𝑇 [

𝑎1

𝑎2

𝑎3

] = [

4𝑎1 + 𝑎3

2𝑎1 + 3𝑎2 + 2𝑎3

𝑎1 + 4𝑎3

]. Determine 

the Eigenspace of T corresponding to each Eigenvalue.  Let B be the standard ordered 

basis for 𝑅3. 

13.   Let T be a linear operator on  𝑃2(𝑅) defined by                                                                                           

𝑇[𝑓(𝑥)] = 𝑓(1) + 𝑓′(0)𝑥 + [𝑓′(0) + 𝑓′′(0)]𝑥2. Test for diagonalisability. 

 

14.       Let T be a linear operator on a vector space V, and let 𝜆1, 𝜆2, 𝜆3 … … … 𝜆𝑘   be distinct 

eigenvalues of T. For each  𝑖 = 1,2,3, … . 𝑘, let Si be a finite linearly independent subset 

of the Eigen space 𝐸𝜆𝑖. Then 𝑆 = 𝑆1 ∪ 𝑆2 ∪ … … ∪ 𝑆𝑘 is a linearly independent subset of 

V. 

 

15. Let 𝑇: 𝑃2(𝑅) → 𝑃3(𝑅)be defined by 𝑇[𝑓(𝑥)] = 𝑥𝑓(𝑥) + 𝑓′(𝑥)is linear. Find the bases for 

both (𝑇), (𝑇), nullity of T, rank of  T and determine whether T is one –to-one or onto. 

 
16. Let 𝑇: 𝑅3 → 𝑅3be a linear transformation defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 2𝑦 − 𝑧, 𝑦 + z, 

           𝑥 + 𝑦 − 2𝑧). Evaluate a basis and dimension of null space N(T) and range space R(T)       

          and  range space R(T). Also verify dimension theorem. 

 

17. Let 𝑉 and 𝑊 be vector spaces over F,and suppose that{𝑣1, 𝑣2 … … … . 𝑣𝑛} is a basis for 

V, For 𝑤1, 𝑤2 . 𝑤𝑛 in W Prove that there exists exactly one linear transformation 

𝑇: 𝑉 → 𝑊 such that T(𝑣𝑖) = 𝑤𝑖 for i=1,2,…n 

 

18.        Suppose that T is one –to-one and that s is a subset of V .Prove that S is linearly 

independent if and only if T(S) is linearly independent .                                                

Suppose  𝛽=  {𝑣1, 𝑣2.,………𝑣𝑛} is abasis for V and T is one –to-one and onto       

Prove that 𝑇(𝛽)=  {𝑇(𝑣1), 𝑇(𝑣2), 𝑇(𝑣𝑛)} is a basis for W 

19.      Let 𝑉 and 𝑊 be vector spaces with subspaces 𝑉1   𝑊1respectively. If    𝑇: 𝑉  → 𝑊 

is linear .Prove that T(𝑉1) is a subspace of w and that x∈ 𝑉: 𝑇(𝑥) ∈ 𝑊1}is a subspace 

of V 

 
20.         If 𝑇: 𝑅4 → 𝑅3 is a linear transformation defined T{𝑥1, 𝑥2, , 𝑥3, 𝑥4}=(𝑥1 − 𝑥2 + 𝑥3 +   

                𝑥4,  1 + 2𝑥3 − 𝑥4,  1 + 𝑥2 − 3𝑥3 − 3𝑥4) for {𝑥1, 𝑥2, , 𝑥3, 𝑥4} ∈ 𝑅 then verify                      
            Rank(T)+Nullity(T)=dim 𝑅4 find yhe bases of  N(T) and R(T) 
           

21.          For a linear operator 𝑇: 𝑅3 → 𝑅3 defined as 𝑇(𝑎, 𝑏, 𝑐) = (−7𝑎 − 4𝑏 + 10𝑐, 4𝑎 −3𝑏 + 
8𝑐, −2𝑎 + 𝑏 − 2𝑐),Point out the eigen values of T and an ordered basis 𝛽for 𝑅3 such that 
the matrix of the given transformation with the respect to the new resultant basis 𝛽 is a 
diagonal matrix 
 

22.      Let T be a linear operator (𝑎, 𝑏, 𝑐) = (−4𝑎 + 3𝑏 − 6𝑐, 6𝑎 − 7𝑏 + 12𝑐, 6𝑎 − 6𝑏 + 11𝑐),   
be the ordered basis then find [𝑇] which is a diagonal matrix. 
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UNIT III – INNER PRODUCT SPACES  

PART – A 

 

1. Define inner Product Space and give its axioms. 

2. Define norm 

3. Define orthogonal 

4. Define orthonormal 

5. Define orthogonal complement. 

6. Define adjoint operator. 

7. Let 𝑥 = (2,1 + 𝑖, 𝑖)𝑎𝑛𝑑 𝑦 = (2 − 𝑖, 2,1 + 2𝑖) be a vector in C3 compute < 𝑥, 𝑦 >. 

8. Find the norm and distance between the vectors u=(1,0,1) and v=(-1,1,0) 

9. Find the norm of the vector u=(1,-1,1) and v=(-1,1,0) in R3 with respect to the inner product 

defined by < 𝑢, 𝑣 > = 𝑢1𝑣1 + 2𝑢2𝑣2 + 3𝑢3𝑣3 . 

10. Find the norm of 𝑣 = (3,4) ∈ 𝑅2 with respect to the usual product. 

11. Consider 𝑓(𝑡0 = 3𝑡 − 5 𝑎𝑛𝑑 𝑔(𝑡) = 𝑡2 in the polynomial space p(t) with inner product                 

< 𝑓, 𝑔 > = ∫ 𝑓(𝑡0𝑔(𝑡)𝑑𝑡, 𝑡ℎ𝑒𝑛 𝑓𝑖𝑛𝑑 ‖𝑓‖ 𝑎𝑛𝑑 ‖𝑔‖ .
1

0
 

12. Prove that in an inner product space V, for any 𝑢, 𝑣 ∈ 𝑉. ‖𝑢 + 𝑣‖2 + ‖𝑢 + 𝑣‖2 = 2‖𝑢‖2 + 2‖𝑢‖2 

13. In ([0,1]), let 𝑓(𝑡) = 𝑡, 𝑔(𝑡) = 𝑒𝑡 Evaluate < 𝑓, 𝑔 >. 

14. Let R2 and 𝑆 = {(1,0), (0,1)}. Check whether S is orthonormal basis or not. 

15. Let 𝑆 = {(
1

√5
,

2

√5
) , (

2

√5
,

−1

√5
)} .verify S is orthonormal basis or not. 

16. Find the value of ‘a’ if the vectors (2,a) and (6,4) are orthogonal vectors in 𝑅2. 

17. Find ‘k’ so that 𝑢 = (1,2, 𝑘, 3) 𝑎𝑛𝑑 𝑣 = (3, 𝑘, 7, −5) in 𝑅4 are orthogonal. 

18. If 𝑢 =  (2,1,2) 𝑎𝑛𝑑 𝑣 =  (1,2,1) 𝑓𝑖𝑛𝑑 𝑝𝑟𝑜𝑗(𝑣, 𝑢). 
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19. State Cauchy Schwarz inequality and Triangle inequality. 

20. If 𝑥, 𝑦 and 𝑧 are vector of inner product space such that < 𝑥, 𝑦 > =< 𝑥, 𝑧 >then prove that 𝑦 = 𝑧. 

 

21. Prove that the norm in a inner product space satisfies ‖𝑣‖  ≥  0 𝑎𝑛𝑑 ‖𝑣‖  =  0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑣 =  0. 

22. Find the norm of 𝑣 = (1,2) ∈ 𝑅2with respect to the inner product  < 𝑢, 𝑣 > = 𝑥1𝑦1 − 2𝑥1𝑦2 − 2𝑥2𝑦1 

23. Let S={(1,0, 𝑖)(1,2,1)} in 𝑐3 Point out 𝑆⊥ 

24. Let W= span ({i,0,1}) in 𝑐3 find the orthonormal bases of w and 𝑤⊥ 

25. Let w be a subspace of v then prove that v=w ⨁ w. 

26.   Let T be a linear operator on v,𝛽 is an orthonormal basis then prove that [𝑇∗]𝛽=[𝑇]𝛽 

27.   Let S and T be linear operators on V then prove that (𝑆 +  𝑇)∗ = 𝑆∗  +  𝑇∗ 

28.   Show that 𝐼∗ = 𝐼 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑢, 𝑣 ∈  𝑣 

29.    Let T be a linear operator on v and let W be a T invariant subspace of V.                                                          

    Show that w is invariant under 𝑇∗ 

30.   Let 𝑉 = 𝑅2, 𝑇(𝑎, 𝑏) = (2𝑎 + 𝑏, 𝑎 − 3𝑏) 𝑥 = (3,5) find 𝑇∗at the given vector in V, when T is a 

Linear operator.  

 

PART – B  (All are 8- marks) 

 
1. let 𝑉 = 𝑀𝑚𝑥𝑛(𝐹)𝑎𝑛𝑑 𝑑𝑒𝑓𝑖𝑛𝑒 < 𝐴, 𝐵 >= 𝑡𝑟 (𝐵∗𝐴) for 𝐴, 𝐵 ∈ 𝑉,the trace of a matrix A is 

defined by 𝑡𝑟(𝐴) = ∑ 𝐴𝑖𝑖.
𝑘
𝑖=1  Verify <. , .> is an inner product space. 

 

2. Let V be a real (or) complex vector space and let B be a basis for V for 𝑥, 𝑦 ∈ 𝑉 there 

exists    𝑣1, 𝑣2, … … … . . 𝑣𝑛 ∈ 𝐵 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = ∑ 𝑎𝑖𝑣𝑖 𝑎𝑛𝑑 𝑦 = ∑ 𝑏𝑖𝑣𝑖  
𝑛
𝑖=1

𝑛
𝑖=1 .                      

Define < 𝑥, 𝑦 > = ∑ 𝑎𝑖𝑏𝑖̅ 
𝑛
𝑖=1 .prove that <. , .> is an inner product on V and that B is an 

orthonormal basis V. 

 

3. Let 𝑥 = (2,1 + 𝑖, 𝑖 )𝑎𝑛𝑑 (2 − 𝑖, 2,1 + 2𝑖) be vectors in 𝐶3.compute (i) < 𝑥, 𝑦 >                      

(ii) ‖𝑥‖  (iii)  ‖𝑦‖   (iv)  ‖𝑥 + 𝑦‖   (v) Cauchy’s inequality (vi) Triangle inequatily. 

 

4. Let V be an inner product space. Then for 𝑥, 𝑦, 𝑧 ∈ 𝑉 𝑎𝑛𝑑𝑐 ∈ 𝐹 ,the following 

statements are true. 

i) < 𝑥, 𝑦 + 𝑧 >= < 𝑥, 𝑦 > +< 𝑥, 𝑧 > 

ii) < 𝑥, 𝑐𝑦 >= 𝑐̅ < 𝑥, 𝑦 > 

iii) < 𝑥, 0 >=< 0, 𝑥 >= 0 

iv) < 𝑥, 𝑥 >=< 𝑥, 𝑧 >  ∀𝑥 ∈ 𝑣, 𝑡ℎ𝑒𝑛 𝑦 = 𝑧   
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5. Let V be an inner product space over F, then for all , 𝑦 ∈ 𝑉 𝑎𝑛𝑑 𝑐 ∈ 𝐹 , the following 

statements are true 

i) ‖𝑐𝑥‖ = |𝑐|‖𝑥‖ 

ii) ‖𝑥‖ = 0, 𝑖𝑓𝑓 𝑥 = 0 

iii) |< 𝑥, 𝑦 >| ≤ ‖𝑥‖‖𝑦‖ 

iv) ‖𝑥 = 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ 

 

 

 

6. Let T be a linear operator on an inner product space V and suppose that ‖𝑇(𝑥)‖ = ‖𝑥‖ 

for all X , prove that T is one-to-one. 

 

 

7. State and prove Cauchy-Schwarz inequality and Triangle inequality in an inner product 

space. 

 
8. Let V be an inner product space. Prove that 

(a) ‖𝑥 ±  𝑦‖2 =  ‖𝑥‖2 ±  2𝑅 <  𝑥, 𝑦 >  +‖𝑦‖2 for all x, y ∈ V, where 𝑅 < 𝑥, 𝑦 > 
denotes the real part of the complex number < 𝑥, 𝑦 >.  

(b) |‖𝑥‖ − ‖𝑦‖|2 ≤ ‖𝑥 − 𝑦‖ for all x, y ∈ V. 

 

9.  Let V be an inner product space over F. prove that polar identities for all 𝑥, 𝑦 ∈ 𝑉.      

< 𝑥, 𝑦 > =
1

4
‖𝑥 + 𝑦‖2 −

1

4
‖𝑥 − 𝑦‖2  if    F=R. 

10. show that in 𝑅3, the vectors (1,1,0), (1,-1,1), (-1,1,2) are orthogonal, are they    

          orthonormal? Justify.   

 

11.  Let V be the vector space of polynomial with inner product given by                                     

< 𝑥, 𝑦 > = ∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡.
1

0
 let (𝑡) = 𝑡 + 2 𝑎𝑛𝑑 𝑔(𝑡) = 𝑡2 − 2𝑡 − 3 ,                                        

find  (i)  < 𝑓, 𝑔 >   (ii)  ‖𝑓‖     (iii)  ‖𝑔‖. 

 
12.  In ([0, 1]), 𝑙𝑒𝑡 𝑓(𝑡) =  𝑡 𝑎𝑛𝑑 𝑔(𝑡) =  𝑒𝑡. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 <  𝑓, 𝑔 >, ‖𝑓‖, ‖𝑔‖𝑎𝑛𝑑‖𝑓 + 𝑔‖                

 Then verify both the Cauchy-Schwarz inequality and the triangle inequality 
 

13. Let {𝑣1, 𝑣2, … … … . . 𝑣𝑘} be an orthogonal set in V and 𝑎1, 𝑎2 , … … … . . 𝑎𝑘  be scalars,  

Prove that ‖∑ 𝑎𝑖𝑣𝑖 
𝑘
𝑖=1 ‖

2
= ∑ |𝑎𝑖|2‖𝑣𝑖‖2𝑘

𝑖=1 . 

 

14.  Apply the Gram-Schmidt process to the given subsets 𝑆 =
{(1,0,1), (0,1,1), (1,3,3)} 𝑎𝑛𝑑 𝑥 = (1,1,2) of the inner product space 𝑉 = 𝑅3 

i) To obtain an orthogonal basis for span (s) 

ii) Normalize the vectors in the basis to obtain an orthonormal basis for span (s) 

iii) Compute to Fourier coefficients of the given vector.   

 

15.  Let 𝑉 = 𝑅4 , 𝑙𝑒𝑡 𝑤1 = (1,0,1,0) , 𝑤2 = (1,1,1,1), 𝑤3 = (0,1,2,1). Use Gram-schmidt 

process to compute the orthogonal vectors and normalize these vectors. 
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16. Evaluate using the Gram Schmidt Process to the given subset  
     𝑆 = {(1, 1,1), (0,1,1), (0,0,1)} 𝑎𝑛𝑑 𝑥 =  (1,0,1) of the inner product space 𝑉 = 𝑅3 to 

obtain    (i)  an orthogonal  basis for span(S).                                                                                                              

(ii) Then normalize the vectors in this basis to obtain an orthonormal  basis β for span(S)   

(iii) compute the Fourier coefficients of the given vector relative to β. 

 
17.  Evaluate by the Gram Schmidt Process to the given subset                                                                                                  

           𝑆 =  {(1, −2, −1,3), (3,6,3, −1), (1,4,2,8)}𝑎𝑛𝑑 𝑥 =  (−1,2,1,1) of the inner product   
           space   = 𝑅4 to obtain (i) an orthogonal basis for span(S).                                                                                                     

      (ii)Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S) 

      (iii)compute the Fourier coefficients of the given vector relative to β. 

 

 

18. Apply the Gram-Schmidt process to the given subsets S of the inner product     

      space V  to obtain 

i) orthogonal basis for span (s) 

ii) Normalize the vectors in the basis to obtain an orthonormal basis for span( s) 

Let 𝑉 = 𝑃2(𝑅) with the inner product < 𝑓, 𝑔 > = ∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡,
1

0
  and {1, 𝑥, 𝑥2} 

 

19.   Apply the Gram-Schmidt process to the given subsets 

  𝑆 = {(1, 𝑖, 0), (1 − 𝑖, 2,4𝑖)} 𝑎𝑛𝑑 𝑥 = (3 + 𝑖, 4𝑖, −4) of the inner product space V= 𝑅3 

i)   To obtain an orthogonal basis for span (s) 

ii)    Normalize the vectors in the basis to obtain an orthonormal basis for span (s) 

iii) Compute to Fourier coefficients of the given vector.   

 

20.    State and prove the Gram-Schmidt orthogonalization theorem   (or)                                               

Let V be an inner product space and𝑆 = {𝑤1, 𝑤2, … … . 𝑤𝑛} be a linearly independent 

subset of V. Define 𝑆 ′ = {𝑣1, 𝑣2, … … . 𝑣𝑛} when 𝑣1 = 𝑤1 and 𝑣𝑘 = 𝑤𝑘 −

∑
<𝑤𝑘 ,𝑣𝑗>

‖𝑣𝑗‖2
𝑘−1
𝑗=1 𝑣𝑗 for2 ≤ 𝑘 ≤ 𝑛. Then S’ is an orthogonal set of non-zero vectors such 

that Span (s’) = Span (s). 

 

21.     Let V be an inner product space, 𝑆 𝑎𝑛𝑑 𝑆0 be the subset of V and W be a finite  

             dimensional subspace of  V. Prove that the following results 

i) 𝑆0 ⊆ 𝑆 ⟹  𝑆┴ ⊆ 𝑆0
┴ 

ii) 𝑆 ⊆ (𝑆┴)
┴

  , 𝑠𝑜 𝑠𝑝𝑎𝑛 (𝑠) ⊆ (𝑆┴)
┴

  

iii) 𝑊 = (𝑊┴)
┴

 

iv) 𝑉 = 𝑊 ⊕ 𝑊┴  

 

22.             Let V be a finite dimensional inner product space, and let T be a linear operator 

on V. Then there exists a unique function 𝑇∗: 𝑉 → 𝑉 such that                                              

< 𝑇(𝑥), 𝑦 > =< 𝑥, 𝑇∗(𝑦) > 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑉 and  𝑇∗ is linear. 
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23.  Let V be an inner product space,  T and U be linear operators on V.then 

i) (𝑇 + 𝑈)∗ = 𝑇∗ + 𝑈∗ 

ii) (𝐶𝑈)∗ = 𝐶̅𝑇∗, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑐 ∈ 𝐹 

iii) (𝑇𝑈)∗ = 𝑈∗𝑇∗ 

iv) 𝑇∗∗ = 𝑇 

v) 𝐼∗ = 𝐼 

 
24.  𝐿𝑒𝑡 𝐴 𝑎𝑛𝑑 𝐵 𝑏𝑒 𝑛 𝑋 𝑛 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠. 𝑇ℎ𝑒𝑛 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡  

(i)  (𝐴 +  𝐵) ∗ =  𝐴 ∗ + 𝐵 ∗  
(ii)  (𝑐𝐴) ∗ =  𝑐 ̅𝐴 ∗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈  𝐹 
(iii)  (𝐴𝐵) ∗ =  𝐵 ∗ 𝐴 ∗ 
(iv)  𝐴 ∗∗ =  𝐴  
(v)  𝐼 ∗ =  𝐼 

 
25.      Let V be a finite dimensional inner product space and let T be a linear operator on V. 

Prove that if  T is invertible, then 𝑇∗ is invertible and (𝑇∗)−1 = (𝑇−1)∗. 

 

 

26.                Suppose that S={𝑣1, 𝑣2, … 𝑣𝑘} is an orthonormal set in an n-dimensional 

inner product space V. Then Prove that     

(i) S can be extended to an orthonormal basis {𝑣1, 𝑣2, … 𝑣𝑘, 𝑣𝐾+1 … …  𝑣𝑛} for V   

(ii)  If W= span(S),then 𝑠1={𝑣𝐾+1, 𝑣𝐾+2 … … . 𝑣𝑛} is an orthonormal basis for 𝑤⊥        

(iii)  If W is any subspace of V , then dim(v)=dim(w)+dim(𝑤⊥). 

    

27. Find the least squares lines and error for the following data (1,2),(2,3),(3,5),(4,7). 

 

 

28.                 For each of the sets of data that follows, use the least squares approximation 

to find     the  best fits with both (i) a linear function and (ii) a quadratic function. 

Compute the error E   in both cases. {(-3, 9), (-2, 6), (0, 2),(1, 1)} 

 

29. For each of the sets of data that follows, use the least squares approximation to  

         find the best fits with both (i) a linear function and (ii) a quadratic function. Compute 

the  error E in both cases.{(-2, 4), (-1, 3), (0, 1), (1, -1), (2, -3)} 

 

30.          Consider the system 𝑥 + 2𝑦 + 𝑧 = 4; 𝑥 –  𝑦  +  2𝑧  =  −11;  𝑥  +  5𝑦  =  19;  find the    

   minimal solution. 
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UNIT IV - PARTIAL DIFFERENTIAL EQUATIONS  

PART – A 

1. Form the partial differential equation by eliminating the arbitrary constants ‘a’ and ‘b’ from  

             𝑙𝑜𝑔(𝑎𝑧 − 1) = 𝑥 + 𝑎𝑦 + 𝑏  ii) 𝑍 = 𝑎𝑥 + 𝑏𝑦 + 𝑎𝑏       (A/M-15) 

2. Form the partial differential equation by eliminating the arbitrary constants ‘a’ and ‘b’ from  

              𝑍 = 𝑎𝑥 + 𝑏𝑦 + 𝑎𝑏 

3. Construct the partial differential equation of all spheres whose centers lie on the Z-axis by the elimination 

of  arbitrary constants.           (N/D-15) 

4. Find the PDE of all spheres whose radii are same.       (N/D-16) 

5.  Form the partial differential equation by eliminating the arbitrary functions from  

  𝒇(𝒙𝟐 + 𝒚𝟐, 𝒛 − 𝒙𝒚) = 𝟎.           (M/J-16) 

6. Form the partial differential equation by eliminating the arbitrary constants ‘a’ and ‘b’from                    

 𝒛 = 𝒂𝒙𝟐 + 𝒃𝒚𝟐                             (N/D-13)(A/M-17) 

7. Form the partial differential equation by eliminating the arbitrary constants ‘a’ and ‘b’from 

  𝑧 = (𝒙𝟐 + 𝒂𝟐)(𝒙𝟐 + 𝒃𝟐)         (A/M-16) 

8. Form the PDE  by eliminating the arbitrary functions from    𝒛 = 𝒇(𝒚/𝒙)     (N/D-14) 

9. Form the PDE  by eliminating the arbitrary functions from     𝑧 = 𝑓(𝑥2 + 𝑦2) 

10. Form the partial differential equation by eliminating the arbitrary functions from  

   𝑖) ∅(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐, 𝒙𝒚𝒛) = 𝟎.  ii) 𝑖) ∅(𝒙𝟐 + 𝒚𝟐, 𝒛 − 𝒙𝒚) = 𝟎 

11. Form the PDE by eliminating the arbitrary functions from 𝒛 = 𝒙𝒇(𝟐𝒙 + 𝒚) + 𝒈(𝟐𝒙 + 𝒚). 

12. Solve √𝑝 + √𝑞 = 1 

13.  Find the complete solution of  𝒒 = 𝟐𝒑𝒙         (A/M-15) 

14. Find the complete solution of  𝒑 + 𝒒 = 𝟏.        (N/D-14) 

15. Find the complete integral of  
𝒛

𝒑𝒒
=

𝒙

𝒑
+

𝒚

𝒒
+ √𝒑𝒒.       (N/D-16) 

16.  Find the complete solution of  PDE 𝒑𝟑 − 𝒒𝟑 = 𝟎.       (M/J-16) 
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17. Find the complete integral of  𝒑𝒒 = 𝒙𝒚. 

18.  Solve  
𝜕2𝑧

𝜕𝑥𝜕𝑦
= 0.  

19. Solve 
𝜕2𝑧

𝜕𝑥2 = sin 𝑥                      (A/M-17) 

20.  Solve(𝐷 + 𝐷’ − 1)(𝐷 − 2𝐷’ + 3)𝑧 = 0.       (N/D-15) 

21. Solve (𝐷3 − 𝐷2𝐷′ − 8𝐷𝐷′2 + 12𝐷′3)𝑧 = 0 

22. Solve  (𝐷 − 𝐷’ − 1)(𝐷 − 2𝐷’ − 2)𝑧 = 0 

23. Solve 𝑧 = 1 + 𝑝2 + 𝑞2. 

24. Solve  (𝐷2 + 2𝐷𝐷′ + 𝐷′2 − 2𝐷 − 2𝐷′)𝑧 = sin (𝑥 + 2𝑦). 

25. Solve  (𝐷4 − 𝐷′4)𝑧 = 0. 

 

 

PART – B    
 

[First Half]   (All are 8-marks) 

 
I - Lagrange’s method 

 

1. Solve:-    (𝑚𝑧 −  𝑛𝑦)𝑝 +  (𝑛𝑥 −  𝑙𝑧)𝑞 =  (𝑙𝑦 −  𝑚𝑥) 

2. Solve:-     𝑥(𝑧2  −  𝑦2)𝑝 + 𝑦(𝑥2  −  𝑧2)𝑞 =  𝑧(𝑦2  −  𝑥2) 

3. Solve:- 𝑥2(𝑦 −  𝑧)𝑝 +  𝑦2(𝑧 −  𝑥)𝑞 =  𝑧2(𝑥 −  𝑦)                         (A/M-17) 

4. Solve:-     (𝑥 − 2𝑧)𝑝 + (2𝑧 − 𝑦)𝑞 = 𝑦 − 𝑥       (N/D-17) 

5. Solve:-    𝑥( 𝑦2 + 𝑧2)𝑝 +  𝑦( 𝑧2 + 𝑥2)𝑞 =  𝑧(𝑦2  −  𝑥2)                      (N/D-16) 

6. Solve:-    𝑥(𝑦2 + 𝑧)𝑝 −  𝑦(𝑥2 + 𝑧)𝑞 =  𝑧(𝑥2 − 𝑦2)                                       (N/D-16) 

7. Solve:-    𝑥(𝑦 −  𝑧)𝑝 +  𝑦(𝑧 −  𝑥)𝑞 =  𝑧(𝑥 −  𝑦)                            (A/M-18)  (N/D-14) 

8. Solve:-     (𝑥2  −  𝑦𝑧)𝑝 +  (𝑦2  −  𝑧𝑥)𝑞 =  (𝑧2 –  𝑥𝑦)                                            (A/M-15) (M/J-16) 

9. Solve:-    (𝑧2 − 𝑦2 − 2𝑦𝑧)𝑝 +  (𝑥𝑦 +  𝑧𝑥)𝑞 =  𝑥𝑦 –  𝑧𝑥                                   (N/D-15) (A/M-17) 

10. Solve:-     (𝑦 −  𝑥𝑧)𝑝 +  (𝑦𝑧 −  𝑥)𝑞 =  (𝑥 +  𝑦)(𝑥 −  𝑦) 

11. Solve:-     (𝒚𝟐 + 𝒛𝟐)𝒑 − 𝒙𝒚 𝒒 + 𝒙𝒚 = 𝟎 

12. Solve:-     𝑧(𝑥 + 𝑦)𝑝 +  𝑧(𝑥 − 𝑦)𝑞 =  (𝑥2 + 𝑦2) 
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II- solve the partial diff-equations   

1.  Find the S.I    𝑍 = 𝑝𝑥 + 𝑞𝑦 + √1 + 𝑝2 + 𝑞2      (M/J-16) 

2. Find the S.I    𝑍 = 𝑝𝑥 + 𝑞𝑦 + 𝑝2 − 𝑞2      (N/D-15) 

3. Find the S.I    𝑍 = 𝑝𝑥 + 𝑞𝑦 + 𝑝2𝑞2       (N/D-14) 

4. Find the C.I    𝑧2(𝑝2 + 𝑞2) = (𝑥2 + 𝑦2)      (M/J-16) 

5. Find the C.I     𝑝2 + 𝑥2𝑦2𝑞2 = 𝑥2𝑧2      (N/D-15) 

6. Find the general solution  𝑍 = 𝑝𝑥 + 𝑞𝑦 + 𝑝2 + 𝑝𝑞 + 𝑞2     (A/M-18) (A/M-17) 

7. Find the C.I     𝑝2 + 𝑞2 − 4𝑝𝑞 = 0 

8. Solve :-   𝑍 = 𝑝𝑥 + 𝑞𝑦 + 𝑝𝑞 

9. Solve :-  √𝑝 + √𝑞 = 1 

10. Solve :-      𝑝2 + 𝑥2𝑦2𝑞2 = 𝑥2𝑧2       (N/D-15) 

11. Solve :-      𝑥2𝑝2 + 𝑦2𝑞2 = 𝑧2       (M/J-16) 

12. Solve :-  𝑝(1 + 𝑞) = 𝑞𝑧        (M/J-16) 

13. Solve :-  𝑝(1 + 𝑞2) = 𝑞(𝑧 − 𝑎) 

 

 

 

[Second Half]     (All are 8-marks) 

 

 

I – Solve the homogeneous and non- homogeneous equations 

1. Solve:-  (𝐷3 − 7𝐷D′
2

− 6𝐷′3
) 𝑧 = sin (𝑥 + 2𝑦)   

2. Solve:- (𝐷2 + 4𝐷𝐷′ − 6𝐷′
2
)𝑧 = 𝑠𝑖𝑛(𝑥 − 2𝑦) + 𝑒2𝑥−𝑦                          (A/M-18) 

3. Solve:- (𝐷2 + 𝐷𝐷′ − 6𝐷′
2
) 𝑧 = 𝑥2𝑦 + 𝑒3𝑥+𝑦       (N/D-14) 

4. Solve:-  (𝐷3 − 7𝐷D′
2

− 6𝐷′3
) 𝑧 = 𝑥2𝑦 + sin (𝑥 + 2𝑦)    (M/J-16) 

5. Solve:- (𝐷2 + 𝐷𝐷′ − 6𝐷′
2
) 𝑧 = ex−y + cos (2𝑥 + 𝑦)    (A/M-17) 

6. Solve:-  (𝐷3 − 7𝐷D′
2

− 6𝐷′3
) 𝑧 = e2x+y + sin (𝑥 + 2𝑦)    (N/D-15) 

7. Solve:-  (𝐷3 − 7𝐷D′
2

− 6𝐷′3
) 𝑧 = ex+y + sin (𝑥 + 2𝑦) 

8. Solve:- (𝐷2 − 𝐷𝐷′ − 2𝐷′
2
) 𝑧 = (2𝑥 + 3𝑦) + 𝑒3𝑥+4𝑦 
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9. Solve:- (𝐷2 + 2𝐷𝐷′ + 𝐷′
2
)𝑧 = 𝑒𝑥−𝑦 + 𝑥𝑦             (N/D-17) 

10. Solve:-   
𝜕3𝑧

𝜕𝑥3 − 4
𝜕3𝑧

𝜕𝑥𝜕𝑦2 = cos(𝑥 − 2𝑦) + 3𝑥𝑦2  

11. Solve:- (𝐷2 + 𝐷𝐷′ − 6𝐷′
2
) 𝑧 = 𝑦 cos 𝑥       (A/M-18) (N/D-16) 

12. Solve:- (𝐷2 + 2𝐷𝐷′ + 𝐷 ′
2
) 𝑧 = 2 cos 𝑦 − 𝑥 sin 𝑦      (N/D-15) 

13. Solve:- (𝐷2 + 𝐷′
2
) 𝑧 = 𝑥2𝑦2        (N/D-15) 

14. Solve:- (𝐷2 + 2𝐷𝐷′ + 𝐷 ′
2
) 𝑧 = 𝑥2𝑦 + 𝑒𝑥−𝑦     (A/M-17) 

15. Solve: (𝐷3 − 2𝐷2𝐷′)𝑧 = 2𝑒2𝑥 + 3𝑥2𝑦.      (M/J-16) 

16. Solve:- (𝐷2 − 3𝐷𝐷′ + 2𝐷′
2

+ 2𝐷 − 2𝐷′) 𝑧 = sin (2𝑥 + 𝑦)                  (A/M-17) 

17. Solve:- (𝐷2 + 2𝐷𝐷′ + 𝐷 ′
2
) 𝑧 = 𝑥2𝑦 

 

 

 

********** 
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  ST.ANNE’S  
COLLEGE OF ENGINEERING AND TECHNOLOGY 

(An ISO 9001:2015 Certified Institution) 
Anguchettypalayam, Panruti – 607106. 

QUESTION BANK 

PERIOD: JULY - NOV 2018                                    BATCH: 2015 – 2019  

BRANCH: ECE         YEAR/SEM: II/III             

SUB CODE/NAME: MA8352 LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS 

 

UNIT V – FOURIER SERIES SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS  

 

PART – A 

 

19. Write down Dirichlet’s conditions of Fourier series.       (M/J-16) 

20. Expand  𝑓(𝑥)  =  1, 𝑖𝑛 (0, 𝜋) as a half range sine series.      ( N/D-15) 

21.  If the fourier series of the function f(x) = x, in (−𝜋 < 𝑥 < 𝜋) with period 2π is given by  (M/J-16) 

  𝑓(𝑥)  = 2(sinx – 
𝑠𝑖𝑛2𝑥

2
 +

𝑠𝑖𝑛3𝑥

3
−  

𝑠𝑖𝑛4𝑥

4
+ ⋯ ) then find the sum of the series 1 −

1

3
+

1

5
−

1

7
+ ⋯ …  

22. Find the sin series function 𝑓(𝑥) =  1, 𝑖𝑛 0 ≤ 𝑥 ≤ 𝜋       (A/M-17) 

23. Find the value of the fourier series of 𝑓(𝑥)  = {
0 𝑖𝑛 (−𝑐, 0)
1 𝑖𝑛 (0, 𝑐)

 at the point of discontinuity𝑥 = 0. ( N/D-15) 

24. Find the value of  bn in the Fourier series of  𝑓(𝑥)  = {
𝑥 + 𝜋 𝑖𝑛 (−𝜋, 0)

−𝑥 + 𝜋 𝑖𝑛 (0, 𝜋)
 .     (N/D-14) 

25. State the sufficient condition for existence of  Fourier series.     (A/M-17) 

26. If (𝜋 − 𝑥)2 =
𝜋2

3
+ ∑

cos 𝑛𝑥

𝑛2
∞
𝑛=1   𝑖𝑛 0 < 𝑥 < 2𝜋 ,then deduce that value of ∑

1

𝑛2
∞
𝑛=1       (N/D-14) 

27. If the Fourier series of the function 𝑓(𝑥) = 𝑥 + 𝑥2 , in the interval (0, 𝜋) is    (A/M-14) 

 

     
𝜋2

3
+ ∑ (−1)𝑛 [

4

𝑛2 cos 𝑛𝑥 −
2

𝑛
sin 𝑛𝑥] ,∞

𝑛=1  then find the value of the infinite series 1 +
1

22 +
1

32 + ⋯ . …. 

 

28. Find the root mean square value of 𝑓(𝑥) = 𝑥(𝑙 − 𝑥) 𝑖𝑛 0 ≤ 𝑥 ≤ 𝑙.          (N/D-14) 

29. Definition of  root mean square value (RMS value) of a function 𝑓(𝑥) 𝑖𝑛 𝑎 < 𝑥 < 𝑏. 

30. The cosine  series for 𝑓(𝑥)  =  𝑥 𝑠𝑖𝑛𝑥 for 0 < 𝑥 < 𝜋 is given as  𝑥𝑠𝑖𝑛𝑥 = 1 −
1

2
 𝑐𝑜𝑠𝑥 −

2 ∑
(−1)𝑛

𝑛2−1

∞
𝑛=2  𝑐𝑜𝑠𝑛𝑥.    Deduce that  1 + 2 [

1

1.3
−

1

3.5
+

1

5.7
− ⋯ ] =

𝜋

2
 .   (A/M-14) 

31. State Parseval’s theorem on Fourier series. 

32. Find the value of 𝑎0  in the Fourier series of  𝑓(𝑥)  =  𝑒𝑥  𝑖𝑛 (0,2𝜋)  
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33. If 𝑓(𝑥)  =  𝑥2 𝑖𝑛 (−𝑙, 𝑙), find the value of  𝑎0 in the Fourier series. 

34. Expand 𝑓(𝑥)  =  𝑘, 𝑖𝑛 (0, 𝜋) as a half range sine series. 

35. State the assumptions in deriving one-dimensional wave equation.  `          (N/D-16)  

36.  State the three possible solution of the one-dimensional wave equation.           (A/M-14) 

37. State the three possible solution of the one-dimensional heat equation  𝑢𝑡 = 𝛼2𝑢𝑥𝑥.            (N/D-16)  

38. Write down the various possible solution of the one-dimensional heat equation.          (M/J-16) 

39. Classify the equation 𝑢𝑥𝑥 + 𝑢𝑥𝑦 = 𝑓(𝑥, 𝑦).                (M/J-16) 

40. Write all possible solution of the two-dimensional heat equation 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0.           (N/D-15)  

41. Solve 3𝑥
𝜕𝑢

𝜕𝑥
− 2𝑦

𝜕𝑢

𝜕𝑦
= 0 using method of separation of variables.            (N/D-15) 

42. What is the constant 𝑎2 in the wave equation.  

43. In the wave equation 
𝜕2𝑥

𝜕𝑡2
= 𝑐2 𝜕2𝑦

𝜕𝑥2
 what does 𝑐2 stand for ?   

44. What is mean by steady state condition in heat flow?                                                    

45. In steady state conditions derive the solution of one dimensional heat flow? 

46. Difference between one dimensional wave and heat flow equations? 

47. The PDE of one dimensional heat equation is 
𝜕𝑢

𝜕𝑡
= 𝛼2 𝜕2𝑢

𝜕𝑥2
 . what is 𝛼2?   

48. What are the assumptions made in deriving one-dimensional heat equation?  

49. State one-dimensional heat equation with the initial and boundary conditions? 

50. State one-dimensional wave equation (zero initial velocity) with the initial and boundary 

conditions? 

 

PART – B 

 

[First Half]  (All are 8- marks) 

 
 

I- Find the ODD and EVEN type in the interval    [−𝝅, 𝝅] and [– 𝒍, 𝒍] 

1.  Find the Fourier series 𝒇(𝒙) = 𝒙𝟐 , 𝑖𝑛 − 𝜋 < 𝑥 < 𝜋 . Hence deduce the value of  ∑
1

𝑛2
∞
𝑛=1   . 

2. 𝒇(𝒙) = 𝒙𝟐     , 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙   [−𝜋, 𝜋] and deduce that   

(i) 1 +
1

22 +
1

32 +
1

42 + ⋯ … … =
𝜋2

6
     (ii) 1 −

1

22 +
1

32 −
1

42 + ⋯ … . . =
𝜋2

12
 

(iii) 1 +
1

32 +
1

52 + ⋯ … … =
𝜋2

8
          (N/D-14) 

 

3. Expand 𝑓(𝑥) = 𝑥2 as a Fourier series in the interval (-𝝅, 𝝅) and  

Hence deduce that 
𝟏

𝟏𝟒 +
𝟏

𝟐𝟒 +
𝟏

𝟑𝟒 +
𝟏

𝟒𝟒 + ⋯ … … … . . =
𝝅𝟒

𝟗𝟎
        (N/D-16) 
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4. Find the Fourier series of  𝒇(𝒙) = 𝒙   𝒊𝒏 − 𝝅 < 𝒙 < 𝝅  of periodicity of 2𝜋     (M/J-16) 

5. Find the Fourier series of  𝒇(𝒙) = |𝒙 |  𝒊𝒏 − 𝝅 < 𝒙 < 𝝅  of periodicity of 2𝜋     (M/J-16) 

6. Find the Fourier series of  𝒇(𝒙) = 𝒙 + 𝑥2   𝒊𝒏 − 𝝅 < 𝒙 < 𝝅   

and hence deduce that ∑
1

𝑛2 =
𝜋2

6

∞
𝑛=1          (N/D-14 , A/M-17) 

7. Find the Fourier series of  𝒇(𝒙) = |𝒔𝒊𝒏 𝒙| 𝒊𝒏 − 𝝅 < 𝒙 < 𝝅  of periodicity of 2𝜋    (A/M-15) 

8. Find the Fourier series of  𝒇(𝒙) = |𝒄𝒐𝒔 𝒙| 𝒊𝒏 − 𝝅 < 𝒙 < 𝝅       (M/J-16) 

9. Find the Fourier series expansion the following periodic function    

 𝒇(𝒙) = {  
𝒍 + 𝒙  , −𝒍 < 𝒙 < 0
𝒍 − 𝒙    , 𝟎 < 𝒙 < 𝑙

 

 

10. Find the Fourier series expansion the following periodic function   

 𝒇(𝒙) = {  
𝟐 + 𝒙      , −𝟐 < 𝒙 < 0

𝟐 − 𝒙    ,   𝟎 < 𝒙 < 2
 .Hence deduce that 𝟏 +

𝟏

𝟑𝟐 +
𝟏

𝟓𝟐 + ⋯ … … =
𝝅𝟐

𝟖
    ( N/D-15) 

 

II-Half-Range Series 

(a )  Find the Cosine  Series                                                 

1. Find the half range cosine series of  𝐟(𝐱) = (𝛑 − 𝐱)𝟐, 𝟎 < 𝑥 < 𝛑.  

 Hence find the sum of the series 
𝟏

𝟏𝟒 +
𝟏

𝟐𝟒 +
𝟏

𝟑𝟒 +
𝟏

𝟒𝟒 + ⋯ … … … ..                                    ( N/D-15) 

2. Find the half range cosine series of  𝐟(𝐱) = 𝐱  𝐢𝐧 (𝟎, 𝛑).                                                                                           

Hence deduce that the value   
𝟏

𝟏𝟐 +
𝟏

𝟑𝟐 +
𝟏

𝟓𝟐 + ⋯ … … … ..      (N/D-17) 

3. Find the half range cosine series of 𝐟(𝐱) = (𝐱 − 𝟏)𝟐, 𝐢𝐧 𝟎 < 𝐱 < 1.    (N/D-14) 

4. Obtain the Fourier cosine series expansion of 𝐟(𝐱) = 𝐱(𝛑 − 𝐱) , 𝐢𝐧 𝟎 < 𝐱 < 𝜋.  (A/M-14) 

5. Expand 𝐟(𝐱) = {  
𝐱          , 𝟎 < 𝐱 < 1

𝟐 − 𝐱    ,   𝟏 < 𝐱 < 2
   as a series of cosine in the interval (0,2)   (N/D-16) (A/M-17)  

 

6. Find the half range cosine series of  𝐟(𝐱) = 𝐱 𝐬𝐢𝐧 𝐱 , in the interval [𝟎, 𝛑]   (N/D-11) 

 (b) Find the Sine series  

1.  Find the half- range sine series of  𝐟(𝐱) = {
𝐱,     𝟎 ≤ 𝐱 ≤  

𝛑

𝟐

𝛑 − 𝐱,    
𝛑

𝟐
≤ 𝐱 ≤ 𝛑

     . 

Hence deduce  the sum of the series   ∑
1

(2n−1)2
∞
n=1             (A/M-15) 

2.  Find the half- range sine series of  𝐟(𝐱) = {
𝐱,     𝟎 ≤ 𝐱 ≤  𝟏

𝟐 − 𝐱,    𝟏 ≤ 𝐱 ≤ 𝟐
     

 

3. Find the half-range sine series of  𝐟(𝐱) = 𝐱 𝐬𝐢𝐧 𝐱   , in the [𝟎, 𝛑]       (M/J-16) 
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IV- Find the Fourier series in the interval (0,2l) 

1. Find the Fourier series of period 2𝑙 for the function  𝑓(𝑥) = (𝑙 − 𝑥)2, 𝟎 < 𝒙 < 𝟐𝑙      

  𝐷𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑒 𝑠𝑢𝑚    ∑
1

𝑛2

∞

𝑛=1

 

2. Find the Fourier series of period 2𝑙 for the function  𝑓(𝑥) = {
𝑙 − 𝑥, 0 < 𝑥 < 𝑙
0   , 𝑙 < 𝑥 < 2𝑙

 

 

V-Find the Fourier series in the interval (0,2𝝅) 

1. Find the Fourier series for the function     𝒇(𝒙) =
𝟏

𝟐
(𝝅 − 𝒙), 𝒊𝒏 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 𝟎 < 𝒙 < 2𝝅. 

𝐷𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑒 𝑠𝑢𝑚 1 −
1

3
+

1

5
−

1

7
+ ⋯ … … … 

 

2. Find the Fourier series for the function     𝒇(𝒙) = (𝝅 − 𝒙)𝟐, 𝒊𝒏 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 𝟎 < 𝒙 < 2𝝅. 

𝐷𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑒 𝑠𝑢𝑚 1 +
1

22
+

1

32
+

1

42
+ ⋯ … … … 

3. Find the Fourier series of period 2𝜋 for the function 𝒇(𝒙) = 𝒙 𝒄𝒐𝒔 𝒙  in 𝟎 < 𝑥 < 2𝜋     (A/M-17) 

4. Find the Fourier series of period 2𝜋 for the function  𝑓(𝑥) = {
1, 0 < 𝑥 < 𝜋

2   , 𝜋 < 𝑥 < 2𝜋
                  (N/D-11) 

 

 

[Second Half]   (All are 16-marks) 
 

TYPE-I   (String with zero-velocity)  

1.              A string is stretched and fastened at two points 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝑙 motion is started by 

displacing the string into the form 𝒚 = 𝒌(𝒍𝒙 − 𝒙𝟐) from which is 𝑡 = 0. Find the displacement of the 

time‘𝑡’.                 

(A/M-15) 

2.             A tightly stretched string of length 2𝑙 is fastened at both ends, the midpoint of the string is 

displaced by a distance ′ℎ′ transversely and the string is released from rest in this position. Find  the 

displacement of the string at any time  ‘𝑡’.                 (A/M-17) 

3.            A tightly stretched string with fixed end points 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝑙 is initially in a position given 

by    𝒚(𝒙, 𝟎) = 𝒚𝟎   𝒔𝒊𝒏𝟑 (
𝝅𝒙

𝒍
),If it is released from rest from this position. Find the displacement of the 

end time ‘𝑡’. 
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4.             A tightly stretched flexible string has its ends fixed at 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝑙. At time  𝑡 = 0, The 

string is given a shape defined by   𝒇(𝒙) = 𝒌𝒙𝟐(𝒍 − 𝒙), where ‘k’ is a constant, and then released from 

rest. Find the displacement of any point ‘𝑥’ of the string at any time 𝑡 > 0. 

5.             Find the displacement of any point of a string, if it is of length 2𝑙 and vibrating between fixed 

end points with initial velocity zero 𝒇(𝒙) = {

𝒌𝒙

𝒍
      ,   𝒊𝒏 𝟎 < 𝑥 < 𝑙

𝟐𝒌 −
𝒌𝒙

𝒍
 , 𝒊𝒏 𝒍 < 𝑥 < 2𝒍

      

6.              A tightly stretched string with fixed end points 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝑙 is initially in a position given 

by 𝒚(𝒙, 𝟎) = 𝒌 𝐬𝐢𝐧
𝟑𝝅𝒙

𝒍
𝐜𝐨𝐬

𝟐𝝅𝒙

𝒍
 .  If it is released from rest from this position, determine the 

displacement  𝑦(𝑥, 𝑡).    

 

TYPE-II    (String with non-zero velocity) 

 

1.           If a string of length ‘𝑙’ is initially at rest in its equilibrium position and each of its points is 

given the velocity (
𝝏𝒚

𝝏𝒕
)

𝒕=𝟎
= 𝑽𝟎𝒔𝒊𝒏𝟑 (

𝝅𝒙

𝒍
) , (𝟎 < 𝑥 < 𝑙).   Determine the displacement function 

𝑦(𝑥, 𝑡) at any time ‘𝑡’.          (N/D-14) 

 

2.         Find the displacement of a string stretched between two fixed points at a distance of 2𝑙 apart 

when the string is initially at rest in equilibrium position and points of the string are given initial 

velocity 𝑉, where 𝑽 = 𝒇(𝒙) = {

𝒙

𝒍
      ,   𝒊𝒏 𝟎 < 𝑥 < 𝑙

(𝟐𝒍−𝒙)

𝒍
 , 𝒊𝒏 𝒍 < 𝑥 < 2𝒍

    , 𝑥  being the distance from an end point.

                     (A/M-16) 

 

3.          If a string of length ‘𝑙’ is initially at rest in its equilibrium position and each of its points is 

given the velocity 𝑉. Such that = {

𝟐𝒌𝒙

𝒍
         , 𝟎 < 𝑥 <

𝒍

𝟐

𝟐𝒌(𝒍−𝒙)

𝒍
,

𝒍

𝟐
< 𝑥 < 𝑙 

 . Find the displacement function 𝑦(𝑥, 𝑡) at 

any time‘𝑡’. 

 

4. A tightly stretched string of length ‘l’ with fixed end points is initially  at rest in its equilibrium 

position. If it is set vibrating by giving each point a velocity      𝒚𝒕(𝒙, 𝟎) = 𝒗𝟎 𝐬𝐢𝐧 (
𝟑𝝅𝒙

𝒍
) 𝐜𝐨𝐬 (

𝝅𝒙

𝒍
) . 

Where 0 < 𝑥 < 𝑙. Find the displacement of the string at a point, at a distance x from one at any 

instant ‘t’           (N/D-16) 
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5.          A tightly stretched string with fixed end points 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝑙 is initially at rest in its 

equilibrium position. If  it is set vibrating giving each point a velocity 𝑉 = 𝜆𝑥(𝑙 − 𝑥) then, Show 

that  𝒚(𝒙, 𝒕) =
𝟖𝝀𝒍𝟑

𝝅𝟒
∑

𝟏

𝒏𝟒 𝒔𝒊𝒏 (
𝒏𝝅𝒙

𝒍
) 𝐬𝐢𝐧 (

𝒏𝝅𝒂𝒕

𝒍
)∞

𝒏=𝟏,𝟑,𝟓 . 

6.         If a string of length ‘𝑙’ is initially at rest in its equilibrium position and each of its points is 

given the velocity 𝑉. Such that = {
𝒌𝒙         , 𝟎 < 𝑥 <

𝒍

𝟐

𝒌(𝒍 − 𝒙),
𝒍

𝟐
< 𝑥 < 𝑙 

 . Find the displacement function 𝑦(𝑥, 𝑡) at 

any time‘𝑡’.           (N/D-15) 

7. A string is stretched between two fixed points at a distance 2𝑙 apart and the points of the string are 

given initial velocities V,   where 𝑽 = 𝒇(𝒙) = {

𝒄𝒙

𝒍
      ,   𝒊𝒏 𝟎 < 𝑥 < 𝑙

𝒄

𝒍
(𝟐𝒍 − 𝒙) , 𝒊𝒏 𝒍 < 𝑥 < 2𝒍

   , 𝑥  being the distance 

from an end point. Find the displacement of the string at any time. 

 

ONE DIMENSIONAL HEAT EQUATIONS 

 

1.  A bar 10 cm long with insulated sides has its ends A and B maintained at temperature at 500𝑐 

𝑎𝑛𝑑 1000𝑐, respectively, until steady state conditions prevails. The temperature at A is suddenly raised 

to 900𝑐 and at the same time lowered to 600𝑐 at B. Find the temperature distributed in the bar at time ‘t.’   

(N/D-15) 

2.  A long rectangular plate with insulated surface is 𝑙 𝑐𝑚 wide. If the temperature along one 

short edge is (𝒙, 𝟎) = (𝒍𝒙 − 𝒙𝟐) 𝟎 < 𝑥 < 𝑙, while the other two long edges   = 0 𝑎𝑛𝑑 𝑥 = 𝑙 as well as 

the other short edge are kept at 00𝑐. Find the steady state temperature function 𝑢(𝑥, 𝑦) 

 

3.  A rod 30cm long has its ends A and B kept at 200𝑐 𝑎𝑛𝑑 800𝑐 respectively until steady state 

conditions previl the temperature at each end its them suddenly reduced at 00𝑐 and kept so. Find the 

resulting temperature function (𝑥, 𝑡) taking x=0 at A. 

4.  The ends A and B of a rod 30cm long have their temperature at 200𝑐 𝑎𝑛𝑑 800𝑐 until steady 

state conditions prevail. The temperature of the end B is suddenly reduced to 600𝑐 and kept so while 

the end A is raised to 400𝑐. Find the temperature distribution in the rod after time. 
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TWO DIMENSIONAL HEAT EQUATIONS 

 

1.                  A rectangular plate with insulated surfaces in 10 cm wide and so long compared to its 

width that it may be considered infinite in length without introducing an appreciable error.If the 

temperature along the short edge y=0 is given by 𝑢(𝑥, 0) = 20𝑥, 0 ≤ 𝑥 ≤ 5 𝑎𝑛𝑑 𝑢(𝑥, 0) =
20(10 − 𝑥), 5 ≤ 𝑥 ≤ 10 while the two long edges x=0 and x=10 as well as the other short edge are 

kept at 00𝑐.Find the temperature function u(x,y) in steady state at any point of the plate. 

 

 

 

2.  A square plate is bounded by the lines 𝒙 = 𝟎, 𝒙 = 𝒂 𝒂𝒏𝒅 𝒚 = 𝟎, 𝒚 = 𝒃. Its surfaces are 

insulated and the temperature along 𝑦 = 𝑏 is kept at 1000𝑐. While the temperature along other three 

edges are at 00𝑐. Find the steady state temperature at any point in the plate.                 (N/D-14) 

3.  A square plate is bounded by the lines 𝒙 = 𝟎, 𝒙 = 𝟐𝟎 𝒂𝒏𝒅 𝒚 = 𝟎, 𝒚 = 𝟐𝟎. Its faces 

are insulated. The temperature along the upper horizontal edge is given by 

(𝒙, 𝟐𝟎)(𝟐𝟎 − 𝒙), 𝟎 <  x < 20, while the other three edge are kept at 00𝑐. Find the steady state 

temperature distribution (𝑥, 𝑦) in the plate.                                                                       (N/D-16) 

 

3.   Along rectangular piate with insulated surface is 𝑙 cm wide. If the temperature along 

one short edge i (𝒙, 𝟎) = (𝒍𝒙 − 𝒙𝟐) 𝟎 < 𝑥 < 𝑙 s, while the other two long edges   = 0 𝑎𝑛𝑑 𝑥 = 1 

       as well as the other short edge are kept at 00𝑐, find the steady state temperature function 𝑢(𝑥, 𝑦) 

 

********** 

 

 

 

 

 


